Abstract: There are two interpretations of the surficial geological evidence in the lower reaches of the Matanuska River in Alaska: the last significant event was the retreat of the Matanuska Glacier (“glacier only” model) or the retreat was followed by a megaflood that reshaped the landscape (“flood” model). The purpose of this proposal is to resolve this conflict.
We intend to (1) map geomorphic features in the contentious areas of the Matanuska and Knik valleys with newly available high-resolution LiDAR DEMs; (2) to conduct fieldwork to assess stratigraphy and lithology of geomorphic features; (3) to model hydrologic processes of various flood flows down the Matanuska Valley.
We will test the following 3 hypotheses: (1) the discrepancy between the “glacier only” and “flood” models can be resolved if the Knik Glacier readvanced over the previously flooded Matanuska lowlands, leaving the glacial features in the path of the earlier Atna flood, or (2) some areas of glacial ice survived the Atna flood, shielding glacial landforms from erosion by the floodwaters; and (3) the glacier dam at Tahneta Pass was destroyed nearly instantaneously. H3 is an interesting problem reaching well beyond the Atna floods (cf. Batbaatar and Gillespie, 2015) and we intend to test it by quantifying discrepancies between flood depths inferred from geological evidence and from hydrologic modeling.
This proposal will build on work previously published in Quaternary Research. The existence of Glacial Lake Atna has been recognized for well over a century (Schrader, 1900), but other than our previous paper, no reports have discussed in detail the lake’s relation to four large adjacent drainages (Matanuska, Susitna, Tanana/Yukon, and Copper rivers) or the modes in which this very large ice impounded lake drained. The project area is one we know very well, and by Alaska standards is highly accessible and has many sites with existing exposures (e.g., gravel pits, road cuts)—so our ability to accomplish necessary field tasks is greatly enhanced.
Report: Read the report here.