Previously Funded Projects

QRC members lead and participate in a wide range of disciplinary and interdisciplinary research projects from the study of past earth climates and glaciations to shifts in the geographic distributions and evolution of vegetation and faunal communities, to the evolution and dispersals of the genus Homo and the increasing scales of human modification of earth environments through the Holocene. QRC provides a venue for meeting and collaborating with scholars across Quaternary disciplines. We are also fortunate to be able to provide seed funding and small grants for member research projects. We are especially happy to support grad student and junior scholar research activities, much of which leads to larger, external funding from agencies like the National Science Foundation.

1 project in Neptropics All Projects

  • 2016-17 | |
    • Camilla Crifo, Student
    • Caroline Stromberg, Faculty

    Using modern phytoliths to determine the spatial resolution of the phytolith fossil record

    Abstract: Phytoliths have been traditionally used to address a variety of questions in archaeobotany and Quaternary paleoecology. Nevertheless, in the last 15 years phytolith analysis has became a powerful tool for multidisciplinary studies in deep-time paleoecology and evolutionary biology. As the field of phytolith analysis is in expansion, it is crucial that we refine this tool by establishing more rigorous protocols allowing applications and comparisons among a wide range of studies. In line with the currently increasing body of work on phytoliths in modern plants, soil and habitats, my research focuses on phytoliths as a tool to reconstruct habit structure (heterogeneity) in space, across different Neotropical ecosystems (dry forest, rainforest, and savanna). To reconstruct habitat structure in the fossil record, phytolith workers typically rely on the handful of studies indicating that phytolith assemblages can preserve a local habitat signal. However, a systematic effort to test quantitatively the limits of phytolith analysis for resolving spatial patterns in vegetation is lacking; furthermore, methodological issues of previous studies restrict the application of phytolith analysis to specific time scales (Holocene), regions (North America, and Africa), and habitats (grasslands and savannas). The objective of my research is to partially fill the gap in the knowledge of the spatial resolution of the phytolith record in different Neotropical habitats.

    Report: read the report here

Back to Top