QRC members lead and participate in a wide range of disciplinary and interdisciplinary research projects from the study of past earth climates and glaciations to shifts in the geographic distributions and evolution of vegetation and faunal communities, to the evolution and dispersals of the genus Homo and the increasing scales of human modification of earth environments through the Holocene. QRC provides a venue for meeting and collaborating with scholars across Quaternary disciplines. We are also fortunate to be able to provide seed funding and small grants for member research projects. We are especially happy to support grad student and junior scholar research activities, much of which leads to larger, external funding from agencies like the National Science Foundation.
Ancient plant community and climate of the Pacific Northwest (USA) during the Middle Miocene Climatic Optimum: The Emerald Creek Flora of Northern Idaho
Abstract: This study will combine plant microfossils (i.e., pollen/spores and phytoliths) and macrofossils (e.g., leaves) from the Emerald Creek flora of Idaho to reconstruct vegetation and climate during the Middle Miocene Climatic Optimum (MMCO). The MMCO occurred ~17–14 million years ago and is one of Earth’s most recent transient warming events. Previous studies of vegetational and climatic response to the MMCO in the western U.S. have utilized different paleobotanical sources (macrofossils or phytoliths) that arrive at conflicting inferences. Understanding why these differences exist is problematic because of several potential confounding factors, including age differences, regional-specific factors (e.g., topography), and differences in what ecological information each source captures, particularly within patchy landscapes. I hypothesize that different paleobotanical sources reflect vegetation within distinct areas of the landscape and thus confound comparisons between studies using different sources when ancient vegetation was patchy. By integrating paleobotanical sources from a single fossil site and sediment horizon I will provide a spatially and temporally resolved perspective of vegetation and climate. Specifically, I predict that at Emerald Creek, macrofossils will disclose a diverse, mainly broadleaved riparian forest, while pollen and phytoliths will disclose an upland, open-habitat grassland—woodland mosaic, all existing in a warm-temperate sub-arid climate. This study will demonstrate the utility of using multiple paleobotanical sources in gaining a comprehensive view of ancient vegetation and climate and provide such a perspective for vegetation and climate in the Pacific Northwest during the MMCO.